考研幫 > 數(shù)學(xué) > 復(fù)習(xí)經(jīng)驗

干貨:2021考研數(shù)學(xué)高數(shù)夯實基礎(chǔ)知識點:導(dǎo)數(shù)與微分

  摘要:有很大一批人因為數(shù)學(xué)差而對考研望而卻步,其實數(shù)學(xué)沒有那么可怕。而高數(shù)又是考研數(shù)學(xué)中難的,作為重中之重,新東方在線考研小編就帶大家一起梳理一下考研數(shù)學(xué)高數(shù)重要考點知識點。幫幫整理了“2021考研數(shù)學(xué)高數(shù)夯實基礎(chǔ)知識點:導(dǎo)數(shù)與微分”的相關(guān)內(nèi)容,希望對大家有所幫助。

  在研究生入學(xué)考試中,高等數(shù)學(xué)是數(shù)一、數(shù)二、數(shù)三考試的公共內(nèi)容。高等數(shù)學(xué)包含函數(shù)極限與連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)、多元函數(shù)微分學(xué)、多元函數(shù)積分學(xué)、常微分方程和無窮級數(shù)等七個模塊,今天我們要梳理的內(nèi)容是導(dǎo)數(shù)與微分,屬于一元函數(shù)微分學(xué)的內(nèi)容。一元函數(shù)微分學(xué)包含導(dǎo)數(shù)與微分、微分中值定理、導(dǎo)數(shù)的應(yīng)用三方面內(nèi)容,接下來我們對這一部分的考試內(nèi)容,考試要求及??碱}型來進行說明。

  1、考試內(nèi)容

  (1)導(dǎo)數(shù)和微分的概念

  (2)導(dǎo)數(shù)的幾何意義和物理意義

  (3)函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系

  (4)平面曲線的切線和法線

  (5)導(dǎo)數(shù)和微分的四則運算

  (6)基本初等函數(shù)的導(dǎo)數(shù)

  (7)復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法

  (8)高階導(dǎo)數(shù)

  (9)一階微分形式的不變性

  (10)微分中值定理

  (11)洛達法則

  (12)函數(shù)單調(diào)性的判別

  (13)函數(shù)的極值

  (14)函數(shù)圖形的凹凸性、拐點及漸近線

  (15)函數(shù)圖形的描繪

  (16)函數(shù)的最大值和最小值

  (17)弧微分、曲率的概念

  (18)曲率圓與曲率半徑(其中16、17只要求數(shù)一、數(shù)二考試掌握,數(shù)三考試不要求)。

  2、考試要求

  (1)理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系(2)了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量(數(shù)一、數(shù)二要求,數(shù)三不要求)(3)掌握導(dǎo)數(shù)的四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式,了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分(4)了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù)(5)會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)(6)理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理(7)掌握用洛達法則求未定式極限的方法(8)理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用(9)會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形(10)了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑(數(shù)一、數(shù)二要求、數(shù)三不要求)。

  3、常考題型

  (1)導(dǎo)數(shù)定義(2)求顯函數(shù)、隱函數(shù)、分段函數(shù)、積分上限函數(shù)、冪指函數(shù)等各種類型的導(dǎo)數(shù)與微分(3)利用函數(shù)的單調(diào)性證明不等式(4)求函數(shù)的極值與最值(5)曲線的凹凸性、拐點、漸近線(6)證明函數(shù)不等式(7)方程根的存在性與個數(shù)(8)洛達法則求函數(shù)極限(9)用介值定理、零點定理、羅爾定理、拉格朗日中值定理證明不等式。

  4、復(fù)習(xí)建議

  (1)加強對基礎(chǔ)概念的理解

  加強對基礎(chǔ)概念的理解是學(xué)習(xí)這一部分的關(guān)鍵。原因有兩個:第一:導(dǎo)數(shù)這章內(nèi)容相對比較簡單。比如求導(dǎo)公式,大家在高中就接觸過。第二:考研中考得多的就是對導(dǎo)數(shù)概念的理解以及對導(dǎo)數(shù)應(yīng)用中極值概念的理解。比如在求分段函數(shù)分段點的導(dǎo)數(shù)要用導(dǎo)數(shù)的定義來求,同學(xué)們就經(jīng)常直接求一側(cè)函數(shù)的導(dǎo)數(shù)再算極限,而這種情況只有建立在導(dǎo)函數(shù)連續(xù)的基礎(chǔ)上才成立。從這些概念本身來看,相對來說比較簡單,但是考法卻是比較深入。所以,希望同學(xué)們要加深對本章概念的理解,千萬不要一知半解就開始盲目的做題。

  (2)加強對??键c的掌握

  本章相對比較簡單,而且重難點分明。具體來說,分為三個章節(jié)。第一部分:可導(dǎo)與可微。其中導(dǎo)數(shù)定義是重點。導(dǎo)數(shù)的定義幾乎是每年重要,而且考察的往往都是變形的形式,但實質(zhì)上都是在考察對極限的理解。第二部分:導(dǎo)數(shù)計算。復(fù)合函數(shù)求導(dǎo)是重點,并在此基礎(chǔ)上掌握冪指函數(shù)求導(dǎo),隱函數(shù)求導(dǎo)及參數(shù)方程求導(dǎo)。高階導(dǎo)數(shù)部分,大家要掌握常見函數(shù)高階導(dǎo)數(shù)的六大公式及萊布尼茲公式。第三部分:導(dǎo)數(shù)的應(yīng)用。其中極值本身的概念也是一個很大的考點,包括極值的要的條件以及極值的第一和第二充分條件。每年考研都會有一些相關(guān)的選擇題。同理,題目考察拐點的時候,同時也考察了凹凸性,導(dǎo)函數(shù)的單調(diào)性等概念。因此,拐點的概念是考察的一個方向,同時拐點的要條件及第一和第二充分條件也是重要考點。請大家注意:只要學(xué)好極值及單調(diào)性,相應(yīng)的凹凸性和拐點也可以類比遷移極值研究的是一階導(dǎo)的正負(fù)號,相應(yīng)的凹凸性研究的是二階導(dǎo)的正負(fù)號。

  (3)多練題,提高計算能力

  在大家理解了重點知識以及明確了考試重點之后,接下來就需要做題鞏固了。針對考試要求的每個考點進行做題鞏固,關(guān)鍵是每做一個題要掌握這道題的解題思路,基本就是從已知條件怎么找到聯(lián)系結(jié)果的進步點另外對于每一類題型要做到勤總結(jié),多整理錯題本,以便每次回顧使用。

  ?幫幫友情提示:干貨:2021考研數(shù)學(xué)高數(shù)夯實基礎(chǔ)知識點:基本積分表公式

關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"15名研友在考研幫APP發(fā)表了觀點

掃我下載考研幫

考研幫地方站更多

你可能會關(guān)心:

來考研幫提升效率

× 關(guān)閉